

Journal of Organometallic Chemistry 494 (1995) C12-C14

Preliminary communication

Synthesis of heterocyclic molybdenum carbene complexes using haloalkyl-substituted epoxides

Harry Adams, Neil A. Bailey, Charles M. Marson, Linda Randall, Mark J. Winter *

Department of Chemistry, The University of Sheffield, Sheffield S3 7HF, UK

Received 21 November 1994

Abstract

The reaction of $I(CH_2)_2CHCH_2O$ and an excess of Lil with $[Mo(CNMe)(CO)_2(\eta-C_5H_5)]^-$ gives crystallographically characterized cis- $[MoI(CO)_2 = C(CH_2)_2CH(CH_2OH)NMe \}(\eta-C_5H_5)]$. This reacts with C_5H_5NO to give a high yield of the γ -lactam $MeN\{C(=O)CH_2CH_2CH(CH_2OH)\}$. The corresponding reaction of $I(CH_2)_3CHCH_2O$ with excess Lil and $[Mo(CNMe)(CO)_2(\eta-C_5H_5)]^-$ gives cis- $[\{Mo(CO)_2\{\eta^2-C(CH_2)_3CH(CH_2IO)\}NHMe\}]$ (also crystallographically characterized) rather than a carbone complex.

Keywords: Molybdenum; Carbene; Epoxides; Group 6; Isocyanide; Heterocycle

We discussed earlier [1] the use that can be made of the ease by which alkyl groups migrate to isocyanide [2-6] in making cyclic carbene complexes cis- $[MI(CO)_{2} = \overline{C(CH_{2})_{3}} NMe (\eta - C_{5}H_{5})] (M = Mo \text{ or } W)$ from the reactions between the anions $[M(CO)_2]$ - $(CNMe)(\eta - C_5H_5)$ ⁻ (1) and $I(CH_2)_3I$. We demonstrate here the utilization of epoxides for the synthesis of cyclic molybdenum aminocarbene complexes in a strategy which also involves alkyl to isocyanide migration. Completion of this strategy by decomplexation of the resulting carbene (in this case to give high yields of a y-lactam) affords an efficient route to useful organic heterocycles. A closely related analogue of this γ -lactam is known to act upon the mammalian nervous system, [7] and related γ -lactams are used as nootropic drugs [8] or to combat arteriosclerosis [9].

We reasoned that a general approach to precursors of γ -hydroxymethyl γ -lactams could be provided by an intramolecular ring closure involving a nucleophilic attack of an imino nitrogen within a metallacarbene moiety on an epoxide group (Scheme 1). Although epoxides are usually attacked by anionic nucleophiles at the less substituted terminus, [10] the formation of a five-membered ring, as in **2** (Scheme 2), was expected because

5-exo-tet cyclizations are favoured over 6-endo-tet processes [11]. The isolation and characterization of the aminocarbene 2 reported here represents the first realization of the approach depicted in Scheme 1.

Addition of $I(CH_2)_2 CHCH_2O$ and an excess of LiI to a solution of $[MO(CNMe)(CO)_2(\eta-C_5H_5)]^-$ in THF at $-78^{\circ}C$, followed by warming to ambient temperature, gave a maroon, alkaline, solution whose IR spectrum $[\nu_{CO}(THF); 1948s$ and $1860s \text{ cm}^{-1}]$ indicated the formation of a *cis*-dicarbonyl complex. The solution was neutralized by addition of dilute aqueous hydrochloric acid. Chromatography on alumina at ambient temperature afforded a red fraction from which dark red-purple crystals of the carbene complex 2 were obtained in 38% yield. This modest yield is the result of the sensitivity of the complex to decomposition, rather

Scheme 1.

^{*} Corresponding author.

⁰⁰²²⁻³²⁸X/95/\$09.50 © 1995 Elsevier Science S.A. All rights reserved SSDI 0022-328X(95)05503-7

C13

than competing by-product formation. Infrared monitoring revealed the presence only of the carbene complex **2** in the reaction mixture. The carbene carbon is manifest in the ¹³C NMR spectrum, which shows three signals $[\delta_{\rm C}({\rm CDCl}_3, -50^{\circ}{\rm C}): 259.2, 252.0, 246.4]$ associated with two carbonyls and a carbene, in positions very similar to those found for *cis*-[MoI(CO)₂-{= $\overline{\rm C}({\rm CH}_2)_3$ NMe}(η -C₅H₅)] [$\delta_{\rm C}({\rm C}_6{\rm D}_5{\rm CD}_3, -60^{\circ}{\rm C}):$ 254.3, 253.2, 253.2, 247.2] [1].

The anionic complex 3 is suggested as intermediate in this reaction. It is formed through nucleophilic replacement of iodide in $I(CH_2)_2CHCH_2O$ followed by migration of the resulting alkyl group to carbonyl. The occurrence of a subsequent 5-exo-tet cyclization is inferred from the constitution of the aminocarbene 2. An X-ray crystal structure analysis for 2 [12] (Fig. 1) confirmed that it is the five-membered ring which is formed. The carbene ligand possesses an envelope conformation for the five-membered ring [r.m.s. deviation of plane C(11), N(1), C(8), C(9) 0.018 Å, deviation of C(10) 0.356 Å]. This conformation is similar to that found in cis-[MoI(CO)_{=}C(CH_2)_3NMe}(\eta-C_5H_5)][1].

Reaction of complex 2 with C_5H_5N-O (three equivalents, toluene at reflux, 24 h) cleaved the carbene from the metal to give the γ -lactam 4 in 92% yield, with 96% purity (by GLC), after workup. The fate of the molybdenum was not determined, but recycling of the molybdenum is being investigated.

Fig. 1. Molecular structure of $[Mol{-C(CH_2)_2CH(CH_2OH)NMe}-(CO)_2(\eta-C_5H_5)]$ (2). Selected bond lengths and angles: Mo(1)–I(1) 2.828(1), Mo(1)–C(2), 1.974(8), Mo(1)–C(1), 1.974(8), Mo(1)–C(8), 2.167(7), N(1)–C(8) 1.293(10), N(1)–C(11) 1.495(11), N(1)–C(12) 1.444(12), C(8)–C(9) 1.495(11), I(1)..O(3) 3.703, I(1)..H(O(3)) 2.70 Å; I(1)–Mo(1)–C(1) 79.2(3), I(1)–Mo(1)–C(2) 128.6(3), C(1)–Mo(1)–C(2), 75.3(4), I(1)–Mo(1)–C(8) 77.2(2), C(1)–Mo(1)–C(8) 116.8(3), C(2)–Mo(1)–C(8) 75.8(3), Mo(1)–C(1)–O(1) 175.4(9), Mo(1)–C(2)–O(2) 177.8(9), N(1)–C(8)–C(9), 108.8(6)°.

Rather surprisingly, the use of $I(CH_2)_3CHCH_2O$ did not lead to isolation of an analogous azacarbene. Although the IR spectrum of the mixture formed from $I(CH_2)_2CHCH_2O$, [Mo(CNMe)(CO)₂(η -C₅H₅)]⁻, and

Scheme 2.

Fig. 2. Molecular structure of $[(M_0(CO)_2\{\eta^2 - C(CH_2)_3CH - (CH_2I)O\}NHMe](\eta - C_5H_5)]$ (5). Selected bond lengths and angles: Mo(1)-N(1)

2.168(10), Mo(1)-C(1) 1.927(12), Mo(1)-C(2) 1.927(13), Mo(1)-C(12) 2.219(13), I(1)-C(14) 2.121(14), N(1)-C(12) 1.409(13), N(1)-Mo(1)-C(2) 89.9(6), C(1)-Mo(1)-C(2) 78.8(5), C(1)-Mo(1)-C(12) 82.5(5), N(1)-Mo(1)-C(12) 37.4(3), N(1)-Mo(1)-C(1) 109.9(5), C(2)-Mo(1)-C(12) 109.5(6), Mo(1)-N(1)-C(12) 73.3(7), Mo(1)-C(12)-N(1) 69.3(7)°.

an excess of LiI was similar to that containing 2, no product could be isolated. It appears that a carbene complex was formed, but decomposed upon work-up. A prolonged reaction time led to replacement of these two carbonyl bands by two new bands [ν_{CO} (THF): 1913s and 1819s cm⁻¹] assigned as the carbonyl ligands of compound 5. The ¹³C NMR spectrum showed no carbenoid signals. Owing to the complexity of the NMR spectra of 5 and its unusual constitution, it was characterized by X-ray crystallography (Fig. 2) [13]. In both of the essentially identical crystallographically independent molecules, the molybdenum is η^2 -bonded to the MeHNC{ $(CH_2)_3CH(CH_2I)O$ } ligand through the exocyclic CN bond. The saturated six-membered ring adopts a chair conformation [r.m.s. deviations through atoms C(8), C(10), C(11), C(12) 0.005, 0.011 A, displacements of O(3) + 0.621, +0.604 Å, and of C(9) - 0.651, -0.665 Å]. Both the NHMe and CH₂I groups are equatorial. The bonding of oxygen, nitrogen, and molybdenum to a single carbon atom as in 5, is to our knowledge, unique.

A plausible mechanism for formation of 5 is presented in Scheme 2. It involves an epoxide ring opening in complex 6 to give the intermediate 7, and subsequent ring closure through intramolecular nucleophilic attack of the alkoxide upon the carbene. A requirement for this process to take place exclusively is that the rate of attack of the aminocarbene nitrogen on the epoxide ring (as for complex 3) to give a six-membered right must be appreciably slower than intermolecular attack of iodide ion on the less substituted epoxide carbon atom.

Acknowledgements

We are pleased to acknowledge assistance from the Royal Society and S.E.R.C., and the award by S.E.R.C. of a postgraduate studentship to L.R.

References and notes

- [1] H. Adams, N.A. Bailey, V.A. Osborn, and M.J. Winter, J. Chem. Soc., Dalton Trans., (1986) 2127.
- [2] R.D. Adams and D.F. Chodosh, J. Am. Chem. Soc., 99 (1977) 6544.
- [3] E. Carmona, P.J. Daff, A. Monge, P. Palma, M.L. Poveda, and C. Ruiz, J. Chem. Soc., Chem. Commun., (1991) 1503.
- [4] A.C. Filippou, W. Grünleitner, and P. Kiprof, J. Organomet. Chem., 410 (1991) 175.
- [5] A.S. Gamble, P.S. White, and J.L. Templeton, Organometallics, 10 (1991) 693.
- [6] A.C. Filippou, W. Grünleitner, and E.O. Fischer, J. Organomet. Chem., 428 (1992) C37.
- [7] E.P. Woo and M.J. Mullins, U.S. Patent, U.S. 4 943 640; Chem. Abstr., 114(1991) 23798.
- [8] E. Toja, C. Govini, C. Zirotti, F. Barzaghi, and G. Galliani, European Patent, 229 (1987) 566.
- [9] R.S. Diaz, J. Monreal, and M. Lucas, J. Neurochem., 55 (1990) 134.
- [10] R. Rossi, Synthesis, (1978) 413.
- [11] J.E. Baldwin, J. Chem. Soc., Chem. Commun., (1976) 734.
- [12] Crystal data for [MoI{=C(CH₂)₂CH(CH₂OH)NMe)(CO)₂(η -C₅H₅)]: monoclinic, a = 11.612(6), b = 9.412(3), c = 14.213(6)Å, $\beta = 92.53(4)^\circ$, U = 1551.9(12) Å³: $D_c = 1.956$ g cm⁻³, Z = 4. Space group P2₁ / c (C⁵_{2h}, No. 14); Nicolet R3 4-circle diffractometer, 2299 independent reflections, final R = 0.0512. Tables of atomic coordinates, bond lengths and angles, and anisotropic thermal parameters have been deposited at the Cambridge Crystallographic Data Centre.
- [13] Crystal data for $[(M_0(CO)_2(\eta^2-C(CH_2)_3CH(CH_2)I)ONHMe)(\eta-C_5H_5)]$: triclinic, a = 8.471(9), b = 12.069(5), c = 16.803(7) Å, $\alpha = 80.29(3)$, $\beta = 75.68(6)$, $\gamma = 79.49(7)^\circ$, U = 1622.8(20) Å³, Z = 4, $D_c = 1.924$ g cm⁻³, space group P1(C_i^1 , No. 2), Nicolet R3 4-circle diffractometer, 3732 independent reflections, final R = 0.0707. Tables of atomic coordinates, bond lengths and angles and anisotropic thermal parameters have been deposited at the Cambridge Crystallographic Data Centre.